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INTRODUCTION 

To most physical scientists, the term measure- 
ment brings to mind issues of precision, reliabil- 
ity, bias, and technique. One takes for granted 
that the attribute in question-be it the velocity 
of light, the mass of an electron, or the diameter 
of the sun-is measurable, that i t  can be quan- 
tified in a consistent and meaningful way. In the 
physical sciences very precise systems of meas- 
urement have been developed that permit largely 
observer-free descriptions of physical objects 
and events. But think back to the early history 
of physics, when the very nature of many meas- 
ures was a matter of doubt and debate, and most 
measurement systems in use resulted from the 
needs of trade and commerce, not physical 
theory. True, there were strong intuitive 
notions of what we now call force, weight, mass, 
time, velocity, momentum, work, heat, and tem- 
perature, but it took a great deal of effort to 
develop methods for measuring these attributes 
of physical systems and to understand the rela- 
tions among them. In the process, it became 
necessary to introduce some far less intuitive 
but equally important measures, such as entropy, 

kinetic and potential energy, acceleration, 
impedance, and charge. 

Psychological measurement is in a compar- 
able, floundering state with informal concepts 
that seem to admit of degree or amount, but 
whose means of measurement remain crude, 
controversial, and uncertain. Subjectively, our 
sensations of hunger, loudness, and sweetness 
are no less real than our sensations of force, 
energy, and acceleration. Moreover, for both 
psychological and physical attributes, our 
sensations suggest a measurement system that 
codes the degree or amount of the attribute or 
property in question. However, it is important to 
recognize an essential difference between the 
objectives of physical and psychological meas- 
urement. Physics studies certain properties of 
space, matter, and radiation, not the sensations 
they engender, although there is no doubt that 
in its early development physics was strongly 
guided, and sometimes misguided, by these 
sensations. In psychology, we are concerned 
with the sensations themselves, and this dif- 
ference poses a challenge to develop measures 
that are appropriate for our special purposes. 
The system of measurement that develops in 
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psychology will undoubtedly turn out to 
resemble that of physics in certain fundamental 
ways, but new problems requiring novel solu- 
tions are also likely to emerge. 

Physics and its applications exhibit three dis- 
tinct levels of theory. First, there are the pri- 
mitive relations among attributes that deter- 
mine both the measurement representations and 
the interconnections among measures, as 
reflected in the structure of physical units. 
Second, there are the various laws of physics 
that are expressed entirely in terms of these 
measures, such as the basic equations of electro- 
magnetic theory (Maxwell's equations), of hydro- 
dynamics, of kinetics, and of statistical mechan- 
ics. And third, certain particular systems are 
modeled and the equations are solved for those 
cases. An example is the force exerted on a par- 
ticular airfoil in a particular fluid flow, or the 
movement of the needle of a voltmeter when 
placed across a particular circuit under par- 
ticular conditions. Keep in mind that, at each of 
the three levels, important regularities are 
found, all of which are called laws; those of 
measurement, those of general physical pro- 
cesses, and those of particular physical systems. 
Although they all express regularities, they are 
obviously not all of the same type, since they 
differ in generality. 

If three distinct levels really can be distin- 
guished, at which level does the psychophysicist 
operate when studying loudness? If a scale of 
loudness is developed, is it (1) an example of 
measurement, (2) a part of some psychophysical 
theory, or (3) the manifestation of the operation 
of a mechanism? In the first case, it must eventu- 
ally be shown to arise as the representation of a 
lawful qualitative structure. In the second, it is 
best thought of as a construct whose ultimate 
status is not necessarily clear; often constructs 
of theories eventually become basic measures, 
once the situation is better understood. And in 
the third, it may best be thought of as a random 
variable, reflecting the probabilistic character 
of a mechanism, but not necessarily having any- 
thing to do with fundamental measurement. 

We discuss the first separately and then lump 
the other two. 

The Strategy of Measurement and 
Scaling in Psychophysics 

In following this strategy we suppose that the 

sensations themselves are attributes of the 
organism, comparable in many ways to the 
properties of physical objects. As such, these 
attributes are assumed to be highly stable and 
regular, and thus they can be subjected to care- 
ful analytical study and represented numeric- 
ally in a manner analogous to physical measure- 
ment. This approach is concerned not only with 
the assignment of numerical values to the 
psychological states, but also with the way in 
which the observed psychological measui-es 
possess various formal properties of the number 
system into which they are being mapped. For 
the purpose of this chapter, we will refer to this 
as the measurement approach. 

If this approach is followed and succeeds, one 
anticipates the discovery of general laws relat- 
ing the sensations to physical attributes. That 
is, the measured sensations are expected to cor- 
respond systematically to the physical quan- 
tities that give rise to them. This is the point of 
view, more or less explicit, that has informed the 
tradition of psychophysical measurement that 
began with Fechner (1860) and received major 
impetus in this century by Thurstone (1927), 
Stevens (1951, 1975; see the latter for numerous 
references), and many others. For example, 
sound intensity, that is, the amplitude of the 
pressure wave impinging on the eardrum, is a 
well-understood physical attribute that is highly 
correlated with the sensation called loudness. It 
is, however, by no means identical to it. For one 
thing, the relationship is not linear; twice the 
amplitude does not give rise to twice the per- 
ceived loudness. Moreover loudness is affected 
by the frequency of the sound as well as by its 
intensity. A more striking example, perhaps, is 
color vision. Light stimuli are described at the 
physical level by the energy at each of an infin- 
ity of wavelengths, but perceptually this infi- 
nite-dimensional space is mapped onto the much 
simpler, three-dimensional structure of the 
psychological color space. Thus, the relation 
between the physical stimulus and the corre- 
sponding psychological response may be quite 
complex, although this approach assumes that 
the relation is lawful. 

For the measurement view to prevail in 
psychophysics or, more generally, in psychol- 
ogy, or even more generally, in biology, it 
appears necessary for some structure of inter- 
connected scales to arise, much as exists in 
physics. This would mean a complex pattern of 
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reductions of some psychological scales to 
others, with a resulting simple pattern of units, 
and quite possibly some simple connection with 
the scales of physics. This appears to be the 
program that Stevens was pursuing; we discuss 
it below. To anticipate, Stevens attempted to 
argue that the psychological scales of intensity 
are all power functions of the primary physical 
scales that manipulate each attribute. Moreover 
he attempted to show that a consistent pattern 
of power functions holds among the scales of 
intensity, suggesting a single underlying attri- 
bute of psychological intensity. Were that true, 
then psychophysical measurement would simply 
enlarge the system of physical measures, just as 
electromagnetic theory did in the second half of 
the last century, and one could anticipate the 
development of psychological theories involv- 
ing these sensory (and perhaps other) variables 
on the model established in physics. 

Within this tradition of measurement there 
are a number of subschools and points of view. 
Perhaps most notable is the division between 
axiomatizers and scalers. The axiomatizers 
(whose approach is exemplified in Krantz, Luce, 
Suppes & Tversky, 1971, Narens, 1985, and 
Roberts, 1979) tend to treat the following type of 
problem: If a body of (potential) qualitative 
observations satisfies certain primitive laws- 
axioms that capture properties of these observa- 
tions-then is it possible to find a numerical 
structure that accurately summarizes these 
observations? In technical terms, the question 
is: To which numerical structures is the set of 
qualitative observations isomorphic? An iso- 
morphism is a one-to-one mapping between 
structures under which the structure of the one 
maps into that of the other. It is also desirable to 
have an explicit process whereby the numerical 
structure can be constructed from the qualita- 
tive one. This literature, which is a part of 
'applicable mathematics,' is purely mathemati- 
cal in character, but the choice of structures to 
be studied is greatly influenced by the type of 
application intended. The objective of this 
approach is to illuminate the range of possible 
situations that permit the development of a 
measurement system, to determine the type of 
system that is appropriate, and to provide at 
least one method for its construction. 

The scalers pose a different, often more imme- 
diately useful, problem. They are concerned 
with transforming psychological data, which 

are for the most part fallible in the sense of 
exhibiting a certain amount of inconsistency 
and irregularity, into some familiar numerical 
representation. For example, the question may 
be how best to locate points in some geometri- 
cal, often metric, space so as to represent the 
psychological relationships among stimuli? 
This approach accepts the fallible nature of the 
data, and is, therefore, not so much concerned 
with verifying that the data satisfy specific 
properties entailed by the chosen representa- 
tion as with searching for the best possible fit of 
the data within the chosen class of representa- 
tions. The fit between the original data and the 
solution is evaluated in some global, statistical 
sense. 

In the short run, this scaling approach has 
proved to be very directly usable. In the long 
run, solving some of the deeper questions posed 
by the axiomatic approach to measurement, 
such as defining the possibilities for measure- 
ment, discovering how complexes of structures 
interrelate (as, for example, those underlying 
the system of physical units), and determining 
what kinds of statements are meaningful in a 
measurement structure, may have more pro- 
found implications for progress in psychology. 

The Strategy of Mechanisms in 
Psychophysics 

The second major strategy for describing psycho- 
physical attributes is to focus on sensory and 
other mechanisms in the organism. This stra- 
tegy is directed at analyzing the internal sys- 
tems responsible for the transduction, trans- 
formation, storage, and interpretation of sen- 
sory information. In this view, the organism is 
likened to an information processing machine, 
with the sensations corresponding to certain 
aspects of its internal workings, perhaps the 
firing patterns of various key neurons that are 
monitored by an executive control system. This 
was probably the implicit view of most psycho- 
physicists working on sensations in the 19th 
century, including the remarkable Helmholtz 
(1867). It is certainly the dominant point of view 
of psychophysicists working in this century. 
Consequently, we will call this the psychophysi- 
cal approach, and the last part of the chapter 
will be devoted to a summary of some classical 
and contemporary work in this field. In that 
section, a distinction is made between local 
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psychophysics, which is concerned primarily 
with sensory mechanisms that serve to discrimi- 
nate stimuli that are physically little different, 
and global psychophysics, which is directed 
toward understanding the apprehension of 
sensations over the full dynamic range of the 
physical signal. The dividing line between local 
and global psychophysics is fuzzy in much the 
same way as is the transition from day to night. 
Global psychophysics, with its concern for the 
relation between sensations and the numeric- 
ally measured physical stimulus has close ties 
with measurement theory, which will be dis- 
cussed first. 

What is t o  be Measured? 

Before turning to the theory of measurement, it 
may be well to consider for a moment the ques- 
tion of what it is that is to be measured. Psycho- 
logists are interested in a wide variety of behav- 
iors in humans and animals, and obviously the 
interests of the investigator determine to a large 
extent which of the observable behaviors receive 
attention. Once this choice has been made, the 
investigator faces the problem of devising an 
appropriate set of experimental measures that 
are sensitive to the attributes of interest. In this 
step, investigators are necessarily guided to a 
significant degree by their own intuitions, but if 
a number of different measures converge on a 
single conclusion, there is more reason to be 
confident of the findings. 

Because of the diversity of interests in psycho- 
logy, there are many different answers to the 
question, what is to be measured? The attributes 
of interest can be physical, physiological, or 
purely psychological. In general, external, 
physical measures, such as age, sex, and weight, 
tend to be easy to measure but difficult or 
impossible to manipulate by experimental 
procedures. Consequently, studies employing 
these variables tend to make comparisons 
across different subject groups. Internal physio- 
logical measures, such as hormone levels, neu- 
ronal firing rate, and blood pressure, are usually 
more difficult to obtain, but they are still reduc- 
ible to some physically defined values. Of these, 
some can be varied over a wide range depending 
on the experimental conditions; others are less 
susceptible to experimental manipulation. Pure- 
ly psychological variables pose very difficult and 
important problems of measurement. Some are 

usually viewed as relatively enduring charac- 
teristics of the individual, such as intelligence, 
authoritarianism, and the number of items that 
can be held in short-term memory. Others are 
characteristic of the momentary state of the 
individual, and they may vary over a wide 
range, depending on the external conditions 
immediately preceding the time at which the 
measurement is made. The external conditions 
are often referred to as stimuli when they are 
varied intentionally in a controlled manner. 

Psychophysical measures of sensory states 
are of the latter type. The stimuli typically used 
in these studies have the desirable feature of 
inducing an internal state rapidly and of permit- 
ting a shift from one state to another in a matter 
of seconds or at worst minutes (the ear adjusts 
exceedingly rapidly, the eye is more leisurely, 
and taste receptors require even more time). By 
common convention, psychophysical stimuli 
that readily alter the internal states are called 
'signals.' 

At this time, physiological techniques have 
not been sufficiently developed to permit direct 
access to many of the sensory states of interest. 
So for the most part the emphasis in psycho- 
physical experiments is on carefully controlled 
changes in the external signals. Does this mean 
that we can assume that there is a one-to-one 
correspondence between signals and sensory 
states? Unfortunately, the data strongly suggest 
that the variability in the induced sensory 
states is far greater than can be accounted for by 
uncontrolled variation in the physical signal 
that gives rise to the sensation. Mach of the 
theoretical and experimental work in psycho- 
physics is an attempt to contend with the imper- 
fect relation between signals and sensory states 
as reflected in the observer's responses. Perhaps 
physiological techniques will some day allow us 
to sidestep this difficult problem, but in the 
meantime we proceed by labeling the internal 
states, albeit imperfectly, by the signals used to 
generate them, and confine ourselves to stimuli 
that bring about rapid sensory changes. 

AXIOMATIC MEASUREMENT 

Our aim in this section is to convey a sense of 
the nature of the work in axiomatic measure- 
ment, not to provide a comprehensive summary 
of the literature pertaining to measurement. 
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Not only would that be impossible in the space 
available, but much of the work in this area is 
technical in character, and thus inappropriate 
for a general presentation. We will, for the most 
part, ignore the technical details that lie 
beneath the results we describe. Nevertheless, it 
should be kept in mind that measurement theory 
is quite distinct from the majority of work in 
psychology, which is of an empirical, inductive 
character. In contrast, measurement theory pro- 
ceeds in the deductive fashion of mathematics: 
certain formal properties are defined and theo- 
rems are proved. These theorems take the form 
of assertions that, if certain properties are true 
of the structure in question, then certain con- 
clusions follow as a matter of pure logic. Meas- 
urement theory is a subpart of that branch of 
mathematics that studies ordered algebraic sys- 
tems; however, the impetus for its development 
is not purely mathematical but comes from the 
need to place measurement in the social sciences 
on a firm foundation. The special character of 
the measurement approach reflects concerns 
that arise from empirical studies in the social 
sciences, particularly psychology. Despite the 
theoretical nature of this work, it has the poten- 
tial to be applied to experimental situations, and 
to the extent that the application is successful it 
may help the investigator to summarize and 
organize complex sets of observations, to 
develop models and theories, and to reach a 
deeper level of understanding of the phenomena 
under study. 

Representation and Uniqueness 
Theorems 

Most results in measurement theory come in 
pairs (for more complete discussions, see Krantz 
et al., 1971; Roberts, 1979; Suppes & Zinnes, 
1963). The first specifies conditions (axioms) 
under which it is possible to find numerical 
representation of the qualitative information. In 
other words, it formulates properties of a quali- 
tative set of observations that are adequate for 
a certain kind of measurement system or scale to 
be appropriate. Such a result is called a repre- 
sentation theorem. The second type of result, 
called a uniqueness theorem, determines how 
unique the resulting measure or scale is. In 
other words, once we know that measurement is 
possible, the uniqueness theorem describes all 
other representations that are possible using 

the same numerical relations and operations. 
We illustrate these two types of theorems in 
several important cases. 

Orderings and Ordinal Measurement 
All measurement, whether within the axiomatic 
or scaling tradition, begins with a method that 
orders the objects or events under study accord- 
ing to the attribute of interest. At least half- 
some would say m o r e o f  the practical measure- 
ment problem is solved by finding a satisfactory 
method for ordering the stimuli according to the 
attribute in question. Over time, the methods 
may change and improve, but concern for refin- 
ing the method should not mask the fact that it 
is merely a way to elicit the qualitative ordering 
of the attribute. Once a method has been adopted, 
we can turn our attention to the rest of the 
measurement problem, namely, finding a num- 
erical representation. 

To study internal states, which is our focus 
here, there is little to do but to ask the subject 
which of two signals produces more or less of the 
psychological attribute in question. For example, 
the subject may be questioned which of two 
signals is louder, brighter, or whatever. There 
are any number of variants on this basic stra- 
tegy; for example, subjects may compare two 
pairs of stimuli and judge which of the two is the 
more similar in terms of certain specified, or 
possibly even unspecified, attributes. 

There are some peculiar features to such 
reports about internal states. In principle, one 
should be able to ask questions about any inter- 
nal state to which the observer has some access, 
but in practice those that change slowly, such as 
hunger, are difficult to compare, possibly because 
of the severe burden placed on memory. Thus we 
are limited to states that change rapidly, and 
even so we must take care to minimize the mem- 
ory load. 

In addition, we have no way of being certain, 
except perhaps by examining the data for inter- 
nal consistency, that the subjects are accurately 
reporting their internal states. Even if the same 
response is given every time the same pair of 
signals is presented-which is rarely the case 
-we find ourselves in a somewhat uncertain 
position until physiological measures of inter- 
nal states become available that closely corre- 
late with verbal reports. Lacking these tech- 
niques, we are left with one of two strategies 
in the face of fluctuations in the observer's 
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responses. One is to attribute these fluctuations 
to errors of measurement and to deal with them 
statistically. For example, one can present two 
signals, a and b, many times, and say that a has 
more of the attribute in question than does b if 
this is the observer's judgment on the majority 
of trials. Alternatively, one can try to build 
theories to account for the nature of the vari- 
ability that arises in the mapping between sig- 
nals and internal states. Some suggested theo- 
ries for doing this are described later. 

For the moment, assume that we have a set of 
order judgments from an observer, and consider 
the question of exactly what properties we 
might expect these judgments to exhibit. Sup- 
pose that we denote the set of signals in the 
experiment by A = {a, b, c, . . .J,  where a typi- 
cal element, say b, is simply a way to identify or 
label a well-defined procedure for presenting a 
particular signal to the subject. Let a 2 b stand 
for the observer's report that the sensation 
generated by a has at least as much of the attri- 
bute as that generated by b. Put another way, 2 
consists of all ordered pairs of signals for which 
the observer asserts that the first member of the 
pair has at least as much of the attribute as the 
second member of the pair. In technical terms, 
2 is called a relation on the set of signals A. The 
first property that we expect the judgments to 
exhibit is transitivity: if whenever a 2 b and 
b 2 c are both true, then a 2 c will also hold in 
the data. In practice, this rarely holds without 
exception, but it appears to be approximately 
true for many of the senses that have been inves- 
tigated. It seems plausible also that this would 
be true of the internal states if we had direct 
access to them, and whatever failures are 
observed in the data may simply result from the 
imperfect match between signals and internal 
states. There also seems to be no problem in 
assuming that the relation 2 is connected: for 
any two signals, a and b, either a 5 b or b 2 a 
or both. (When a 2 b and b Z a are both true, 
we say that a is indifferent to b and write a - 6.) 
Any relation that is both connected and tran- 
sitive is said to be a weak order. These minimal 
assumptions seem to be likely to hold quite 
generally for many sets of elicited judgments. 

Having made these definitions, we can turn 
to the measurement problem in which we are 
really interested. The question is whether there 
is a way of assigning numbers to signals, say the 
number +(a) to signal a, such that the observed 

order relation on the set of signals is mirrored 
by the order of the numbers into which they are 
mapped. In other words, can we find a function, 
4, from A into the real numbers that is order 
preserving in the following sense: for all a, b in 
A, a 2 b if and only if +(a) 2 +(b)? That is to 
say, the numerical representation is such that 
the number assigned to a is greater than or 
equal to the number assigned to b in just those 
cases in which a is judged to have at least as 
much of the property as b. This is the representa- 
tion question, and the answer to it is a qualified 
Yes. An order preserving function can always be 
found if A is either finite or denumerable (which 
means that the signals can be enumerated by 
using the integers). When A is infinite and not 
denumerable, a stricter requirement, of a some- 
what technical nature, is needed for the func- 
tion to exist. This requirement is that the set A 
must include a denumerable subset that acts in 
A in the same way as the rational numbers (the 
fractions) act in the set of real numbers, namely, 
that it is dense in the sense that between any 
two distinct numbers there is a rational number. 
This result, precisely formulated, is known as 
the Cantor-Birkhoff Theorem (see Section 2.1 of 
Krantz et al., 1971, or Sec. 3.1 of Roberts, 1979). 
This is the first major result of measurement 
theory. 

It might seem that the major objective of 
measurement has been accomplished, namely, 
that of finding a numerical scale to represent the 
set of signals. However, the answer to the 
second measurement question, uniqueness, is 
disappointing. It turns out that any strictly 
increasing function of the obtained scale + is 
just as good as the original scale. This means 
that if +*(x) is given by f [+(x)], where f is any 
strictly increasing function whatsoever, then it  
is also an order preserving numerical repre- 
sentation. Scales that are unique only up to 
such transformations are known as ordinal 
scales. (This term and those of ratio, interval, 
and log interval scales to be defined below were 
introduced by Stevens, 1946.) 

To make this point more concrete and to illu- 
strate why this kind of scale is problematic, 
consider the example where +*(x)  = f [+(x)] = 

+ 3 ( ~ )  + 2. This is a monotonic increasing func- 
tion of +-because f [+(a)] > f [+(b)] if and only 
if +(a) > +(b)-and so according to the unique- 
ness result this new +* is also an order preserv- 
ing scale. We call this result disappointing 
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because nothing about numbers except their 
order is invariant. Suppose a, b, and c are such 
that d(a)  + d(b)  = d(c). Then for our trans- 
formation, 

In words, this means that addition is not invari- 
ant under scale changes, that is, d*(c) # d*(a) + 
d*(b). Multiplication also is not invariant under 
scale changes. And so we do not have available 
to us any of the power of the numbers, and much 
of the point of measurement is lost. For example, 
statistics such as the mean and variance are not 
invariant. Only summary statistics based on fre- 
quency, such as the median, are not changed in 
going from one ordinal scale to another. 

In order to gain greater uniqueness, more 
structure than just order is required of the 
empirical relational structure. We now turn to 
two major, related approaches to the problem of 
obtaining greater uniqueness of the measure- 
ment scale. 

Extensive Structures: Combining Objects 
Many physical attributes have, in addition to 
order, the property that if two objects, both pos- 
sessing the attribute, are combined, then the 
combination also exhibits the same attribute. 
For example, not only can weights be ordered by 
placing them in the two pans of an equal-arm 
balance and seeing which pan drops, but if the 
two objects are combined by placing both in one 
pan, the combination so formed also has weight. 
We use the symbol 0 to denote the operation of 
combining objects, so that a b means the com- 
bination of a with b. And we use the general 
term concatenation to refer to the process of 
combining two objects. 

There are three kinds of properties to be 
expected in a system having both an order rela- 
tion 2 and a concatenation operation 0: those 
that involve only 2, those that involve only the 
concatenation operation 0, and those that 
involve both 2 and O .  The first we have 
described already: 2 is a weak order. The 
second arises by considering what happens 
when the concatenation operation is applied 
more than once, as for example, when a and b 
are first combined, and c is then added to them, 
written as (a 0 b) 0 c. An alternative would be 

first to combine b and c, giving b 0 c, and then to 
combine this with a, giving a (b c). At least 
for the pan balance situation, we would expect 
the following to hold: if there is some weight d 
that balances (a  0 b) 0 c, then it should also 
balance a 0 (b  0 c), and if d does not balance 
(a 0 b) 0 c, then it also should not balance 
a 0 (b 0 c). In symbols, (a 0 b) 0 c - d if and only 
if a 0 (b  0 c) - d .  Because the indifference rela- 
tion - of a weak order is transitive, this 
property, called weak associativity, is normally 
abbreviated as 

(a 0 b) 0 c - a 0 (b  0 c). 

Many operations, such as addition and multi- 
plication of numbers, and sums and products of 
matrices, exhibit associativity. However, not all 
operations are associative; for example, the aver- 
aging operation defined by x 0 y = ( x  + y)/2 fails 
associativity, because ( x  0 y) 0 z = [(x + y)/2 + 2112 
is not in general equal to x 0 ( y  z )  = [ x  + ( y  + 
z)/21/2. 

Another property one would expect is: a 0 b - b 0 a. This is called commutativity. It is clearly 
true of the weight example, and indeed it follows 
as a consequence of the additive representation. 
Nevertheless we need not assume it explicitly 
because it follows logically from the other 
axioms. 

We next evolve two properties involving both 
0 and 2. The first comes from considering two 
equivalent objects c and c', written as c - c'-in 
the case of weight, two objects that balance 
exactly. If an additional object a is added to the 
pan containing c, then that side of the balance 
will drop (so long as the balance is in a vacuum, 
or the objects have density greater than air). 
This property, known aspositivity, says that for 
any a in A if c - c', then a 0 c > c'. The second 
property is again concerned with a situation in 
which c - c', and c is combined with an object 
a. However, in this case c' is combined with yet 
another object b. Intuitively, it seems plausible 
that if a 2 b, then combining c with a and com- 
bining c' with b should not change the ordering; 
that is, a 0 c 2 b 0 c' should hold. Going the 
other way, if a 0 c 2 b 0 c', then taking away c 
and c' should preserve the ordering of a and b, so 
that a 2 b. Together these are summarized as: 

if c - c', then a 2 b if and only if 
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This property is called monotonicity (or indepen- 
dence). 

These definitions allow us to state the next 
important result in measurement theory. This 
result says that if 2 is a weak order, if 0 is 
weakly associative, and if both positivity and 
monotonicity hold (together with some more 
technical assumptions, such as solvability and 
the Archimedean axioms, which we need not go 
into here), then there is a mapping 4 of A into 
the positive real numbers that preserves the 
order relation 2 and is such that the concatena- 
tion operation 0 in A corresponds to addition in 
the real numbers. In symbols, the function 4 
that maps A into the real numbers has the 
properties that, for all a and b in A, 

(i) a 2 b if and only if 4(a) 2 4(b), 
and 

(ii) 4(a 0 b) = 4(a) + 4(b). 

Any qualitative structure that has a representa- 
tion with these two properties is called an exten- 
sive structure. 

The answer to the question of the uniqueness 
is now most satisfactory. The representation is 
unique to the extent that any other representa- 
tion that preserves the order relation and maps 
the concatenation operation into addition is 
related to the first by a positive multiplicative 
constant. That is, if 4 and 4* are two representa- 
tions, then it must be the case that 4*(a) = 

k4(a) for all a in A, where k is some positive 
number. Families of representations that have 
the property of being unique up to a multiplica- 
tive constant are called ratio scales. Moreover if 
we choose to map a particular object of A into 
the number 1, that is, to make it the unit, then 
the representation is uniquely specified. (For a 
more detailed discussion of extensive measure- 
ment, see Sec. 3.1, 3.4, 3.6 of Krantz et al., 1971, 
or Sec. 3.6 of Roberts, 1979). 

In physics there are a number of cases, 
including the measurement of mass, length, and 
time, in which a positive, monotonic, associ- 
ative operation of the required sort exists. How- 
ever, there are others for which either there is 
no suitable concatenation operation, as with 
density or momentum, or an operation exists but 
it fails to meet one or another of the needed 
properties, as with temperature. In psychology 
few operations that one can think of preserve 
any attribute of interest, and by and large those 

that do fail to satisfy one or another of the 
properties needed for extensive measurement. 
Given this, why have we bothered to describe 
extensive measurement here? There are two 
reasons. First, it is the basis for certain funda- 
mentally important scales in physics, and it has 
been taken by many philosophers of science 
as the prototype of successful measurement. 
Second, extensive measurement is central to the 
development of the rest of axiomatic measure- 
ment theory in that nearly every other result in 
the theory either reduces to extensive measure- 
ment (although not necessarily in a trivial or 
obvious way) or is in some way a generalization 
of it. 

From here, there are two general avenues of 
development. One is to consider cases that have 
an operation with properties different from or 
weaker than those required for extensive meas- 
urement, or both. For example, only a minor 
modification allows probability to be treated as 
extensive measurement. For this case, let A be 
the set of possible chance events, and let a 2 b 
mean that event a is at least as probable as event 
b. Let the operation 0 be the union of disjoint 
(i.e., mutually exclusive) events. Note that this 
operation differs from that of extensive meas- 
urement because it is defined for only some of 
the pairs of elements of A, namely, those events 
that are disjoint. Nevertheless, a modification of 
the theory of extensive measurement yields the 
usual probability representation that is finitely 
additive. This has played some role in research 
on decision theory, and such qualitative theo- 
ries of probability may turn out to have impor- 
tant philosophic implications, as described 
later. The second avenue of development that 
may be followed is to abandon entirely the 
notion of an operation. We turn next to an 
approach that does this, at least on the surface. 

Conjoint Structures: Trading off Factors 
Thus far we have confined ourselves to the situ- 
ation in which the set of objects being studied 
varies in just one physical variable. Many cases 
of interest, however, involve multiple, indepen- 
dently varying factors. Much of science, includ- 
ing psychology, studies tradeoffs between such 
factors, Examples in psychology are stimulus 
pairs consisting of an amount of food and a 
delay of its receipt that are equally rewarding; 
pairs of intensities and frequencies of pure tones 
that are equally loud; and pairs of luminances 
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and durations that are equally detectable. More 
generally, one can ask which of two different 
sets of factors exhibits more of the psychological 
attribute; is 5 sec of access to a food tray after a 
3-sec delay more or less preferred than 2sec of 
access following a 1-sec delay; is a 60-dB SPL, 
500-Hz tone more or less loud than a 50-dB, 1000- 
Hz tone; is 50msec of a 100 troland light flash 
more or less detectable than a 20-msec, 500- 
troland flash? 

The stimuli in these two-factor situations can 
be described as pairs (a, p), where a labels the 
amount or level of factor A, and p labels the 
amount of factor P. The set of all such pairs 
(a, p) is called the Cartesian product of A and P, 
denoted A x P. Given a factorial structure of 
this sort, we can ask subjects to order the pairs 
(a, p) for some psychological attribute, such as 
preference, loudness, or detectability. This, 
then, gives an order on the set A x P, and the 
measurement question is: How can this psycho- 
logical structure be represented numerically? 
At first glance, it appears that this is just the 
ordinal measurement case described earlier, 
which was unsatisfactory because the numeri- 
cal representation was so lacking in uniqueness. 
It turns out, however, that if the numerical 
representation is required to reflect both the 
factorial structure of the pairs and the obtained 
pattern of tradeoffs, then the representation is 
much more unique than an ordinal scale. 

Perhaps it will help to understand the solu- 
tion to this representation problem if we first 
give one of many examples from physics. Sup- 
pose A is the set of all possible homogeneous 
substances, such as lead, water, oxygen, and so 
on, and P represents a set of containers. Thus 
(a, p) refers to the amount of substance labeled 
a just sufficient to fill the container labeled p. 
Let the ordering 2 be that induced on A x P by 
mass, as measured by a pan balance in a 
vacuum. From physics, we know that there is a 
positively valued numerical scale of mass m on 
A x P, of density Q on A, and of volume V on P, 
such that for all a in A and p in P, 

4% P )  = e (a )V(p) ,  

or, for short, m = QV. That is, a number can be 
assigned to each pair (a, p) that is equal to the 
product of the number assigned to a and the 
number assigned to p. The factorial structure 
and the trading off of the factors in this situ- 
ation are represented by the separate numerical 

mappings for A and P, the product of which 
gives the representation for A x P. A repre- 
sentation of this sort is called a product repre- 
sentation. 

In fact, it turns out that more can be said 
than this. There is a mass concatenation opera- 
tion, which is denoted here as ., on A x P, such 
that 

m[(a, P )  om (b, q)l = m(a, P )  + m(b, 9).  

In addition, there is a volume concatenation 
operation 0, on P such that 

V ( P  O" 9 )  = V ( P )  + V(9) .  
In words, there is some concatenation operation 
(placing the two filled containers on one side of 
the pan balance) on the pairs of substances and 
containers that corresponds to addition of the 
numerical values on the volume scale V .  

Keeping this example in mind, we turn now 
to the general measurement problem: under 
what conditions does a weak order, 2, on A x P 
have a product representation, and how unique 
is it? The answer must somehow involve the 
interplay between the order relation and the 
factorial structure. We now define two proper- 
ties that must govern this interplay in order for 
a representation of the desired sort to exist. The 
first property says that, if two pairs have the 
same level on one factor, then the same order on 
the pairs should obtain, independently of what 
this common factor is. In symbols, for all a, b in 
A, and p, q in P 

(a, P )  2 (b, P )  if and only if (a, q )  2 (b,  q)  

and (a,  p) 2 (a,  q) if and only if (b,  p) 2 (b,  q).  

It should be clear why this property, called inde- 
pendence, is essential if an ordering on the 
separate factors A and P is to exist. For 
example, if (a, P )  2 (b, P )  but (a,  q )  < (b,  q), 
then it would be impossible to assign any num- 
bers to a and b that are consistent with the 
ordering on the factorial structure, A x P. Such 
a failure of independence is reminiscent of inter- 
actions between factors in the context of analy- 
sis of variance. Consider a two-factor experi- 
ment in which two variables are being simul- 
taneously varied. If it turns out that there is a 
significant interaction between the factors, then 
no general statements can be made about the 
main effects of each of the factors taken singly. 

Note that if independence holds, we may 
define an order 2, on A by: a 2, b if and only 
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Factor P (a, p) 2 (b,  q)  if and only if 

Figure 1.1. Graphical representation of the double 
cancellation property. An arrow means that the stim- 
ulus pair at the foot of the arrow dominates the pair at 
the head of the arrow. Each single arrow is an 
antecedent assumption; the double arrow is the con- 
clusion. 

if for somep and so for allp in P, (a, p)  2 (b, p). 
In like manner, 2, is defined on P. These are 
referred to as induced orders. 

The second property needed for a multiplica- 
tive representation, called double cancellation, 
is less familiar, but equally important, and is 
described with reference to Figure 1.1. 

Each of the two factors has three levels: a, f ,  
and b are the levels of A, and p, x, and q are 
those of P. The requirement is that whenever 
the obtained judgments exhibit the ordering 
indicated by the single arrows, ( f ,  p )  2 (b,  x) 
and (a,  x) 2 ( f ,  q ) ,  then they must also exhibit 
the ordering indicated by the double arrows, 
(a, P )  2 (b ,  9) .  

With these definitions in hand, we now state 
the measurement result for this case. It can be 
shown (Debreu, 1960a; Luce & Tukey, 1964; 
Krantz et al., 1971, chap. 6) that if these two 
properties, independence and double cancella- 
tion, hold together with some more, rather tech- 
nical assumptions (again some form of solvabil- 
ity and an Archimedean axiom), then a multipli- 
cative representation of positive scale values 
exists on the factors. That is to say, there exists 
a positive, real-valued mapping $, on A, and J lp  
on P, such that 

Moreover, if $,$, is one such representation, 
any other must be of the form y$>$;, where a 
and y are both positive numbers. Families of 
representations that are invariant up to this 
kind of power transformation are called log- 
interval scales. 

A completely equivalent representation, in 
the sense of containing the same information, is 
produced by taking the logarithm of the multi- 
plicative representation. If 4, = log $, and 

= log $,, then 4, + 4, = log $,$, is an 
additive representation, and it is unique up to 
the affine transformation of the form a4, + 
a$, + P, where a is greater than zero and P = 

logy. Such families are called interval scales. As 
with the ratio scales found for extensive measure- 
ment, the unit or scale factor is not fixed. For the 
interval scales there is an additional degree of 
freedom, the exponent a in the case of log inter- 
val scales and the additive constant Pin the case 
of pure interval scales. Thus, these two scale 
types are slightly less unique than are ratio 
scales, but this additional degree of freedom 
does not Dose serious difficulties. In fact. the 
three scale types, ratio, interval, and log inter- 
val, are exactly the ones that have proved 
most useful in well-developed physical theories 
involving measurement. 

Earlier we said that many of the measure- 
ment situations that have been studied have a 
close tie in one way or another to extensive 
measurement, in which there is a concatenation 
operation 0. In the example given earlier in this 
section with physical substances and con- 
tainers, we discussed the existence of such 
operations. The general relationship between 
conjoint and extensive measurement is not too 
complicated to be outlined here. Suppose A and 
P each have a smallest element, denoted a, and 
p,, respectively, under the induced orderings 
2, on A and 2, on P defined by: a b if 
(a, P )  2 (b, P )  for all P ,  and P 2, q if (a,  P) 2 
(a,  q )  for all a. For each a in A, let n(a) be that 
element of P such that (a,  p,) -- (a,, n(a)). This 
means that the 'interval' on A with end points a 
and a, is just matched by the interval on P with 
end points p, and n(a). Now, we would like to 
combine the interval from a, to a with that from 
a, to any b in A; this gives the concatenation 
a 0 b. In order to see the trick for doing this, it 
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a b  aob 

Factor A 

Figure 1.2. Graphical representation of the function 
n(b) and of the operation a 0 b. Stimulus pairs on the 
same curve are equivalent. 

may be well to follow the steps in Figure 1.2. The 
first step is to map the interval from a, to b onto 
P, by finding n(b) such that (a,, ~ ( b ) )  is indif- 
ferent to (b, p,). For example, if the structure 
consists of pairs of substances and amounts 
ordered by mass, then n(b) denotes the con- 
tainer such that the amount of substance a, has 
the same mass as the amount of substance b that 
fills container p,. The interval from p, to n(b) 
is then mapped back onto A, using a as the 
bottom of the interval. That is, we look for the 
element a 0 b such that (a b, p,) -- [a, n(b)]. 
So in the example a 0 b is that substance in the 
amount filling container p, that has the same 
mass as substance a in the amount filling con- 
tainer ~ ( b ) .  If this can be found (i.e., if such an 
a 0 b exists for all a and b in A), then the double 
cancellation property ensures that the opera- 
tion 0 thus defined is associative. Indeed, it can 
be shown that A with the induced ordering 2, 
and the concatenation operation is an extensive 
structure, and so there is an additive scale of 4, 
on A. By a similar argument one can construct 
a scale bp on P. Then one shows that the numeri- 
cal ordering of 4, + 4, corresponds to the qual- 
itative ordering of 2. By this trick, the proof of 
the conjoint case is. reduced to the extensive 
measurement situation. (If no minimal elements 
exist in either A or P, then additional problems 
are encountered, but they can be overcome.) The 
theory of conjoint measurement just described 
for two factors generalizes naturally to any 
finite, but fixed, number of factors, but the two- 

factor case illustrates the essential points. 
Later, in the section on functional measure- 
ment, we consider the case in which the number 
of factors is not fixed. 

Proximity Structures: The Judgment of 
Similarity 
To this point we have assumed that the subject 
orders (some of) the stimuli; such data are often 
called dominance data. It is also possible and 
common to get subjects to judge how close or 
similar two stimuli are. For example, if a, b, c, d 
are stimuli, then we may ask the subject to judge 
whether a is closer to b than c is to d ;  if so, we 
write (a, b) 5 (c, d).  Such data, often called 
proximity data, form an ordering 5 of A x A. 

A number of axiomatic theories exist for 
proximity data, leading to various sorts of 
representations for these data. The simplest, 
which is very closely related to additive con- 
joint measurement, results in a mapping 4 of A 
into the real numbers such that 

(a, b) 5 (c, d )  if and only if 

Rather more important, and somewhat trickier 
to axiomatize, is the representation 

(a, b) 5 (c, d )  if and only if 

where 1x1 denotes the absolute magnitude of x, 
independent of its sign. These axiom systems 
can be found in chapter 4 of Krantz et al. (1971). 

More important for scaling purposes are 
representations not into the real numbers, but 
into some sort of geometric space, especially 
some type of metric space. These representa- 
tions are described in detail under Scaling of 
Proximity Data, and a discussion of the axiomatic 
basis for this can be found in Beals, Krantz, and 
Tversky (1968). 

A rather different approach has been taken 
by Tversky (1977), who followed in spirit earlier 
ideas for probability models, which are described 
below. The essential idea is that stimuli can be 
thought of as collections of features or attri- 
butes. His feature-matching model postulates 
that similarity data can be accounted for by 
three sets of features: those the objects share 
and those that are unique to each of the two 
objects. More specifically, let A be the features 
or properties of object a and B those of object b. 
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The model assumes that the more features that 
are held in common by the two objects-that is, 
the more features in the intersection A and B, 
A n B-the greater will be the similarity meas- 
ure. Unique features-those of a not shared by b 
and those of b not shared by a,  denoted A - B 
and B - A, respectively-are assumed to sub- 
tract from judged similarity. Tversky has pro- 
vided conditions (axioms) under which there 
exists a function f that assigns numerical values 
to sets of features such that the observed simi- 
larity data are monotonically related to the fol- 
lowing equation: 

where 8, a, and P are positive constants. This 
expression incorporates the assumption that 
shared features add to and unique features sub- 
tract from the overall similarity between a 
and b. 

This feature-matching model is extremely 
general. The constants, B, a, and P, allow for the 
possibility that different tasks may induce the 
subject to place different emphasis on the 
shared and distinctive features. For example, if 
the subject is to rate how much alike the stimuli 
are, greater emphasis may be placed on the 
shared features than if the subject's task focuses 
on differences between objects. Moreover, tasks 
that are directional in character-for example, 
when the question is how much the first object 
is like the second object-may place greater 
emphasis on, say, the unique features of the first 
object than on those of the second. This allows 
the model to account for frequently obtained 
asymmetric similarity measures, that is, cases in 
which the measured similarity of a to b is dif- 
ferent from that of b to a. In addition, the fea- 
tures of the objects need not be either equal in 
number or equally salient. This difference may 
be reflected in certain kinds of similarity meas- 
ures, such as when some members of the set of 
objects turn out to be correctly identified more 
often than other members. Finally, the model 
may account for particular kinds of context 
effects, in which specific features or properties 
become important or salient because they are 
useful for dividing the set of objects into con- 
venient subsets. We note that, although the fea- 
ture-matching model is extremely general and 
powerful, no method yet exists for determining 

the appropriate features or for finding the 
required numerical function for the set of 
features. 

Scaling Arising from Representation 
Theorems 
Each axiom system for measurement leads to a 
family of numerical representations or a scale, 
and to the extent that the proof is constructive 
it leads in principle to a scaling method. How- 
ever, since not all scaling methods have received 
a measurement treatment, we have elected to 
discuss them later in a separate section. But 
before leaving the topic of measurement, we 
illustrate the major device for constructing a 
scale in the case of extensive measurement. 

Suppose a is any element of the stimulus set. 
Let a,, a,, . . . , a,, . . . be distinct objects in the 
set that are each equivalent to a. Then in an 
extensive structure, which is associative, we 
define the concept of n copies of a, denoted nu, to 
be 

na = a , o a , o . . . o a , .  

Note that if 4 is an additive representation in 
the sense of 4 ( a  0 b)  = 4 ( a )  + 4(b) ,  then 
4(na)  = n4(a) .  Now, to carry out an approxi- 
mate construction, some element e is chosen to 
be the unit and is assigned 4(e)  = 1. Suppose we 
wish to estimate 4 to an accuracy of E. Choose n 
to be an integer such that n > I /& .  For any ele- 
ment a, first find na and then search for that 
integer m such that 

The existence of such an m must be assured by 
an axiom of the system, called, the Archi- 
medean axiom. Note that if 4 exists, 

and so 
m / n  I 4 ( a )  5 m / n  + l / n .  

Thus, to an accuracy better than E ,  4 ( a )  = mln. 
This is basically the method by which physi- 

cal scales were originally developed, and this 
method can readily be extended to the conjoint 
measurement case. A psychological application 
of this method in the conjoint case was carried 
out by Levelt, Riemersma, and Bunt (1972). In 
that study subjects judged binaural loudness, 
with different intensities presented to the two 
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ears. They found that, to a good approximation, 
loudness is additive across the two ears and that 
for each ear it is a power function of physical 
intensity (see the section on magnitude estima- 
tion). Because there is considerable variability 
in such judgments, there is room for error. For 
this reason, Falmagne (1976) developed a modi- 
fied method based on median responses, and 
data reported in his studies suggest that the 
picture may not be as simple as indicated by 
Levelt et al. 

The method just described is usable only 
when one is working with very fine-grained 
dimensions so that elements with specific 
properties can be found. In psychology this is 
not often the case, because only a small number 
of levels of each of the factors can be generated, 
and one must then solve a finite system of linear 
inequalities. The theory for this is well 
developed and there are frequently used com- 
puter packages for solving the equations. (See 
the later section on functional measurement for 
an approach to the finite, factorial case.) 

Meaningfulness and Invariance 
As we have seen, fundamental measurement 
involves the search for numerical structures 
that mimic in all essentials the structure of the 
set of empirical observations. One's interest in 
finding such representations is primarily that 
they place at one's disposal all the powerful 
tools of mathematical analysis, including the 
calculus, probability theory and stochastic 
processes, statistics, Fourier analysis, etc. Valu- 
able as this is-it has been a major feature of the 
flowering of physics during the past 300 years 
Aangers  may arise from the fact that, once an 
empirical structure is mapped into numbers, the 
numbers tend to assume a life of their own, 
inviting assertions that go beyond what was 
actually captured in the measurement. 

As an example, suppose 2 is a weak order on 
the set {a, b, c, d, e )  that ranks the elements in 
alphabetical order. Each of the two numerical 

Table 1.1. 

Object Representation 1 Representation 2 

representations shown in Table 1.1 is an equally 
suitable representation of this ranking. Observe 
that 2, 6, and 8 are values of both representa- 
tions, and, of course, 2 + 6 = 8 is a truth of 
arithmetic. But does this arithmetical statement 
correspond to something that is true of the 
empirical structure, the alphabetical ordering 
of a, b, c, d, and e? One suspects that the answer 
is No, but is the reason clear? One might say 
that the addition operation does not correspond 
to an empirical truth because the empirical 
structure has no operation that is mapped into 
the numerical operation + . Although true, this 
is irrelevant. Often numerical operations are 
meaningful, even though they do not correspond 
explicitly to anything in the qualitative struc- 
ture. Recall, for example, that multiplication (or 
addition) meaningfully enters into the repre- 
sentation of conjoint structures, even though 
nothing corresponds to it directly in the empiri- 
cal situation. 

Why, then, is the statement 2 + 6 = 8 not 
meaningful in our example? A more subtle obser- 
vation, and one that is closer to the point, is that 
addition does not remain invariant when we 
substitute one perfectly acceptable representa- 
tion for another. That is, addition of the values 
for representation 1 does not correspond to addi- 
tion of the values for representation 2. To see 
this, let f be the function that takes representa- 
tion 1 into representation 2, so that f(8) = 6, 
f(6) = 4, and f (2) = 1. Now, if the operation of 
addition were invariant under this mapping, it 
would mean that f(2 + 6) should be equal 
to f(2) + f(6). But this is not true, since 
f ( 2 +  6 ) =  f (8)=  6andf(2)+  f (6 )=  1 + 4 = 5, 
which are not equal. So the addition operation is 
not invariant, and this is the real reason that it 
makes no sense to add scale values in this case. 
Before formalizing this more precisely, we turn 
briefly again to the concept of scale types. 

Scale Types 
We have already indicated how mappings between 
different, equally good numerical representa- 
tions can be used to classify the measurement 
scales. Stevens (1946, 1951) first brought this to 
the attention of psychologists, and he isolated 
three distinct cases that appear to be important 
in psychology, and indeed also in physics. These 
cases differ in the kinds of operations that are 
invariant under mappings between equivalent 
representations. The most restrictive condition 
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that can be applied to these mappings is that the 
representation be unique except for multiplica- 
tion by a positive constant (often called a sim- 
ilarity transformation), as was true for exten- 
sive measurement. As was noted earlier, meas- 
urement with this degree of uniqueness is called 
ratio measurement and the family of represen- 
tations is called a ratio scale. 

Stevens also singled out those empirical 
structures that have both a ratio scale repre- 
sentation and also a largest element. Examples 
of a largest element are the velocity of light and 
the certain event in probability measurement. If 
the value of one, or any other fixed value, is 
assigned to the largest element, then no trans- 
formations are permitted; Stevens called these 
absolute scales. It is true that such boundedness 
causes special theoretical problems, but it is not 
really useful to treat those structures as more 
constrained than other ratio scales. 

We return to the question raised above: when 
is a numerical statement involving the opera- 
tion of addition invariant under all possible 
representations within the scale? The answer is 
that this is true only for ratio measurement. 
This can be seen by noting that the transforma- 
tion f from one scale to another must be increas- 
ing and it must satisfy the following constraint: 
for all positive real x and y 

This is known to be true only if f (x) = ax, 
where a is some fixed positive constant (Acz61, 
1966). It is easy to verify that such functions 
have the required property; it is more difficult to 
prove that they are the only ones that do. So, in 
order for + to be invariant in the class of repre- 
sentations, the scale must be of the ratio type. 

A less restrictive condition that can be 
applied to the mappings between equivalent 
representations is that the mappings take the 
form of a positive linear (or affine) transforma- 
tion, ax + f i ,  a > 0. The scales that have this 
property are called interval scales. Note that 
since f i  can be any real number, the numerical 
values can be either positive or negative. If, 
however, we apply an exponential transforma- 
tion, ye"" with y = ea > 0, all values in the new 
representation are positive numbers, addition is 
transformed to multiplication, and the new repre- 
sentations are related to one another by the 
power transformation, qxv, q > 0, v > 0. Such a 
family of representations is called a log-interval 

scale because a logarithmic transformation con- 
verts them into an interval scale. 

The weakest case is ordinal measurement, 
where the measurement representations differ 
from one another by strictly increasing func- 
tion, and any such function generates another 
representation. Because only order information 
is invariant under mappings between the repre- 
sentations, these are called ordinal scales. Some 
researchers, including Stevens, choose to class 
many : one mappings as measurement, calling 
these nominal scales. We omit them here 
because we believe measurement should be 
defined as involving additional structure such 
as ordering relations. 

Symmetric Structures 
For some years measurement theorists have 
wondered whether there might exist interesting 
empirical structures with scales of strength inter- 
mediate between ordinal and interval and 
between interval and ratio. In fact, there are a t  
least two classes of structures that are not ratio, 
interval, or ordinal and whose scale types have 
never been characterized. These are semiorders 
(Suppes & Zinnes, 1963), which model algebraic 
thresholds, and Coombs's preference model in 
which a common ordering is folded about indi- 
vidual points to yield the preference orders of 
individuals (see below). Recently, Narens 
(1981a, b, 1985) has significantly clarified these 
issues. 

Consider mappings of a structure that trans- 
form it onto itself while preserving its structure 
-in other words, mappings that represent it on 
itself. This is exactly what a scale transforma- 
tion does in the numerical representation, but 
we can also study such mappings in the empiri- 
cal structure itself. They are called automor- 
phisms, and their existence corresponds to 
symmetries in the structure. Only symmetric 
structures have automorphisms, and the greater 
the degree of symmetry, the richer the set-tech- 
nically, g r o u p o f  automorphisms. One way to 
describe this richness is as follows. Let M be an 
integer, and suppose that each set of M distinct 
points can be mapped by an automorphism into 
any other set of M distinct points that are 
ordered in the same way as the first set; we then 
say the structure is M-point homogeneous. Thus, 
for example, a structure with an interval scale 
representation is 2-point homogeneous since 
with positive linear transformation one can 
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always find one that maps the point ( x ,  y), 
x > y, into (u ,  v), u > v. 

A second notion characterizes the redun- 
dancy o f  the automorphisms. I f  N points can be 
mapped into another N points, can the mapping 
be done in  more than one way? I f  not-that is, 
whenever two automorphisms agree at N dis- 
tinct points, they are the same automorphisms 
-then the structure is said to be N-point unique. 
W e  can easily verify that an interval scale struc- 
ture is %point unique. A structure is said to be 
of scale type (M,  N ) ,  i f  M is the largest value for 
which i t  is M-point homogeneous and N is the 
smallest value for which it is N-point unique. I t  
is easy to  show that M I N. 

Narens has established the following. For 
structures that are o f  type (M,  M ) ,  and that 
have a representation onto either the real num- 
bers or the positive real numbers-this means a 
highly dense set o f  objects-then 

( i )  M = 1 i f  and only i f  there is a ratio scale 
representation. 

(ii) M = 2 i f  and only i f  there is an interval 
scale representation. 

(iii) There are no (M,  M )  structures for 
which M > 2. 

Later i t  was shown that i f  a structure on the real 
numbers is both M-point homogeneous, M > 1, 
and N-point unique for some N ,  then i t  is 2-point 
unique and has a representation whose auto- 
morphisms form a subgroup o f  the linear trans- 
formations o f  an interval scale (Alper 1984, 
1987). This means they are o f  the form x -t 
ax + p, but not necessarily every transforma- 
tion o f  this type is an automorphism. Thus, for 
structures with M 2 1, the only case beyond 
ratio and interval is that with M = 1 and 
N = 2. Very little is known about the cases with 
either M = 0 or N = co (defined to  be those that 
are not N-point unique for any finite N ) .  Exam- 
ples o f  M = 0 structures are probability meas- 
ures over events defined on a continuum; and 
examples of  N = co are threshold structures 
called semiorders. 

Luce and Narens (1985) have studied all pos- 
sible structures with a concatenation operation. 
They established that the most general ratio 
scale structure on the positive real numbers 
must have a numerical operation o f  the form: for 
all real x and y, x y = y f (x /y ) ,  where f is a 
strictly increasing function and f ( x ) / x  is strictly 

decreasing. And the most general interval scale 
on the real numbers has an operation o f  the 
form: there are constants a and b that are both 
between 0 and 1, such that for all real x and y, 

Luce and Narens show that this leads to a pos- 
sible theory for choices among monetary gam- 
bles. I t  is similar to and only slightly more com- 
plicated than the well-known subjective expected 
utility theory (see Ch. 10 o f  Vol. 2), except that i t  
does not presuppose a high degree o f  rationality 
on the part o f  the decision maker. Further 
generalizations are in  Luce (1986b). 

Structure and Reference Invariance 
That addition is a meaningful concept i f  and 
only i f  measurement is at the level o f  a ratio 
scale is a special case o f  the following more 
general concept. Conaider any numerical rela- 
tion, by which we mean some collection R o f  
k-tuples (x,, x,, . . . , x,), where k is a fixed 
integer and the order o f  the elements matter. 
Such a k-tuple is called an (ordered) pair when 
k = 2, a triple when k = 3, and a quadruple 
when k = 4. Addition is an example o f  such a 
relation since i t  consists o f  all triples (x, ,  x,, x,) 
for which, in  the usual notation, x, + x, = x,. 
Another example is quadruples (x,, x,, x,, x,) 
that satisfy the cross-ratio property x,x, = x2x3. 
Now the property we want to isolate--call i t  
structure invariance ( in  the numerical struc- 
turebrequires a relation R to be invariant 
under the admissible transformations that take 
one measurement representation into another, 
that is, the automorphisms of  the representa- 
tion. More formally, a relation R on the real 
numbers is structure invariant relative to  a 
measurement theory i f  whenever (x, ,  x,, . . . , q) 
is in  R and whenever f is a transformation that 
takes one representation into another, then 
[ f ( x , ) ,  f(x,) ,  . . . , f ( xk ) ]  is also in  R. This is a 
first condition that must be met i f  R is to  be 
called a meaningful numerical relation vis-a-vis 
a particular measurement structure. Is there 
more to  meaningfulness? 

Consider a numerical relation R and a par- 
ticular representation $ o f  the empirical struc- 
ture. W e  can then ask about all the k-tuples (a,, 
a,, . . . , ab)  in  the empirical structure that map 
under $ into R, that is, such that [$(a,), $(a,), 
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. . . , 4(a,)] is an element of R. Let this set of 
empirical k-tuples be denoted by S(R, d), which 
makes explicit that it depends on the choice of 
both R and 4. Now, if the numerical relation R 
corresponds to something empirical-that is, 
has an invariant meaning back in the empirical 
s t ructurethen S(R, 4) should not in fact 
depend on 4. This is to say, if 4 and t+h are both 
representations, S(R, 4) = S(R, *). If this holds 
for all representations, we say R is reference 
inuariant. 

It is interesting that when measurement is 
onto all real numbers or onto all the positive 
reals, then it can be shown that a numerical 
relation is reference invariant if and only if it is 
structure invariant. So nothing new has been 
added in these cases, although when measure- 
ment is not onto an open real interval, such as 
the positive reals, the two concepts may not 
agree. 

A natural auestion to raise is: what con- 
ditions must an empirical relation S satisfy in 
order that it map onto a reference-invariant 
numerical relation? One might first think that 
any relation defined in the empirical structure 
could arise, but that is not true. Only some rela- 
tions S can be said to be empirically meaningful. 
The answer is found by looking at the automor- 
phisms of the structure, and the requirement is 
that S map into itself under each automorphism. 
Such structure invariant relations (in the 
empirical structure) can be shown to correspond 
exactly to the numerical relations that are 
reference invariant. 

For measurement situations in which the 
empirical structures are so rich that the numeri- 
cal measurements are onto either the real num- 
bers or the positive real numbers, we accept 
these three equivalent concepts-structure 
invariance in the empirical structure, structure 
invariance in the numerical structure, and 
reference invarianceas a characterization of 
meaningfulness. (It is unclear which of the 
three, if any, is the correct definition when they 
do not agree.) These concepts of meaningfulness 
have evolved through the work of Adams, Fagot, 
and Robinson, 1965; Luce, 1978; Narens, 1981a, 
b, 1985; Pfanzagl, 1968; Suppes and Zinnes, 1963; 
as well as unpublished work. Much still remains 
to be done to explicate this concept fully. 

The remainder of the section outlines two 
applications of these ideas. One is very impor- 
tant in physics and potentially important in 

psychology; the other has been a source of con- 
troversy in psychology for several decades. 

Dimensional Invariance 
The scales of physics are all very neatly tied 
together, as is reflected in the pattern of their 
units. One can select a set of independent scales 
as basic--one common, but by no means unique, 
choice is mass, length, time, charge, and tem- 
pera tureand  the units of all other measures 
can be expressed as products of powers of these. 
If the corresponding units are gram, meter, 
second, coulomb, and kelvin, then that of energy 
is gm2/s2, of impedance is gm2/c2s, etc. This 
arises in part because many multiplicative con- 
joint structures exist that establish intimate 
connections between scales and in part because 
there is a simple compatibility between a num- 
ber of concatenation operations and the con- 
joint structures in situations in which those 
scales enter. For example, kinetic energy E, 
mass m and velocity u are related by 
E = (1/2)mu2. This complex of interrelated 
empirical structures can all be represented by a 
numerical structure called a multiplicative vec- 
tor space. Physicists have long asserted that the 
relations in the vector space that correspond to 
physical laws must satisfy invariance under cer- 
tain transformations of the vector space called 
similarities because they generalize the one- 
dimensional transformations of a ratio scale. 
This invariance property, known as dimensional 
inuariance, is a special case of the measurement- 
theoretic concept of meaningfulness, just defined 
(Luce, 1978). 

Dimensional invariance of physical laws was 
shown many years ago (Buckingham, 1914; 
Krantz et al., 1971, Theorem 10.4) to impose 
severe constraints on the numerical form of 
physical laws, and it leads to an analytical 
technique called dimensional analysis. Often 
one can arrive at the form of a physical law, 
sometimes determined completely except for a 
numerical constant, merely by knowing the 
relevant variables and without solving any of 
the basic equations for the dynamics involved. A 
good reference to the method and its applica- 
tions is Sedov (1959). So far no effective use has 
been made in psychology of dimensional methods, 
the reason being, in part at least, that no one has 
seen how to add any purely psychological vari- 
ables to the dimensional structure of physics. 
For more detailed discussions (see Krantz et al., 
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1971, vol. 1, chap. 10; vol. 3 (in preparation); 
Luce, 1978). 

Meaningfulness and Statistics 
The major impact of the measurement concept 
of meaningfulness in psychology has concerned 
statistics, and, unfortunately, a considerable 
amount of controversy and confusion about the 
matter has ensued. Ever since Stevens empha- 
sized the importance of scale type, it has been 
realized that the meaningfulness of any asser- 
tion involving a statistic, such as the mean, 
median, standard deviation, and so on, depends 
upon the scale type of the measurement. Con- 
sider, for example, the mean of k measurements 
x l ,  x,,  . . . , x k ,  namely, 

k 

and let u be another measurement. Then the 
equation ? = u is a relation that is reference 
invariant for both a ratio and an interval scale, 
but clearly not for an ordinal scale. Table 1.2 
summarizes a number of reference-invariant 
(i.e., meaningful) statements or propositions for 
different scale types when the measurement is 
onto either the reals or the positive reals, as is 
appropriate. In each case, one can verify the 
assertion simply by testing to see whether the 
statement satisfies numerical structure invari- 
ance. For example, the statement ? = y + u is 
meaningful for a ratio scale, since multiplying 
each of the values by a positive constant a 
results in the mathematically equivalent state- 

ment a? = ay + au. However, the same state- 
ment is not meaningful for an interval scale, 
since ? = y + u is not equivalent to (a? + 8) = 

( a j  + 8) + (au + 8). It should be noted that it is 
not the statisticper se that is or is not meaningful, 
but rather the proposition in which it appears. 

The problem is to pass from this table, which 
is not especially controversial, to statistical 
practice, which is. One extreme position is that, 
for example, one must never perform a t test, 
which involves the statistic Jk-l(? - u)/s,  
(see Table 1.2 for symbols), unless the observa- 
tions come from a ratio scale. The reason given 
is that this statistic is only invariant under ratio 
scale transformations. The opposite extreme 
view is that measurement considerations are 
totally irrelevant to any statistical inference 
which, after all, has to do with some property of 
a set of numbers and not where they came from. 
As is often the case when two contradictory 
statements are each based on somewhat plausi- 
ble arguments, neither is wholly right nor 
wholly wrong. Krantz et al. (in preparation) 
arguejn detail the following view of the matter. 

For any of this to make sense we must be 
working with an empirical situation that has 
both a measurement structure (including, at a 
minimum, an ordering) and a probability aspect. 
Viewed one way, the empirical structure is a 
qualitative measurement structure that admits 
some sort of numerical measurement represen- 
tation. Viewed another way, the empirical struc- 
ture is a population on which various numerical 
functions (called random variables) may be 

Table 1.2. Examples of meaningful propositions 

Sample statistic Formula Scale type Meaningful propositions 

Mean 

Median 

Geometric mean 

ratio E = u , f  = y + u  
interval 2 = u , ?  - u = y  - u 

that x, of x,, . . . , xzk+, ordinal x, is the median of x,, . . . , x,,,, 
such that x, < xj for 
exactly k i 's 

i, = exp [i i, log x i ]  log interval is = w, ig = T ~ ,  i gu  = ygv 

I uz 
Standard deviation 4 = [- 1 (x ,  - i)'] ratio S, = u 

k ; = I  interval S. = 7sv 

Coefficient of variation s,/E ratio S, - - - - 7  
x 
















































































































